Normal sperm count is one of the essential components of fertility where count between 20 and 40 million per milliliter is considered normal. Lack of sperm count is one of the leading causes of male infertility. The best way to keep up the sperm count is healthy diet, which can help in development and growth of sperms. There are several foods to improve sperm count some of them are given below.

Garlic:

It contains things like allicin which not only improve blood circulation to the genital organs and encourage formation of sperm but also prevent already formed sperms from damaging. Selenium and vitamin B6 present in garlic also takes part in sperms protection and increase the production of male hormone testosterone.

Ginseng:

It somewhat acts like garlic and work by relaxing muscles, boosting testosterone levels, improving blood flow to the genital region and enhancing sexual desire and performance. According to a study conducted at South Illinois University, it can also be used to treat erectile dysfunction.

Asparagus:

This green vegetable is one of the best foods to improve sperm count as it is busting with vitamin C which is not only a very powerful antioxidant but also protects the testicular cells.
Walnuts: Walnuts contain arganine which enhance testicular sperm production and help increase semen volume. The omega-3 fatty acids present in walnuts increases the blood flow to the testicles. Other then this it also contains antioxidants which not only prevents sperm from oxidation but also protects the body from other harmful products. Walnuts are also well known for its cholesterol lowering properties.

Dark chocolate:

This is one of the foods to improve sperm count which will also act as a mood setter. Dark chocolate contain L-arginine HCL which acts like walnuts arginine and increase the sperm count and semen volume. Dark chocolate is also well known for its high antioxidant content.

Oysters:

They are one of the best foods to improve sperm count as they have high proportion of zinc which not only increase sperm count but when coupled with amino acid have a miraculous effects on sperm motility as well. Oysters have been considered as an aphrodisiac since ancient roman times. A study published in Journal of Laboratory Clinical Medicine showed a directly proportional link between amount of zinc and sperm count.

Pomegranate:

It have a power to increase sperm count by not actually producing more sperms but by reducing there destruction. Pomegranate contains certain chemicals which reduces the level of bloods malondialdehyde, an organic compound responsible for sperms destruction.

Banana:

This fruit can help increase sperm count as it contains an enzyme called bromelain which have an ability of regulation of sex hormones. It also contains several vitamins such as B1, A and C which not only have anti oxidant properties but also increase a man’s stamina and in turn his ability to produce sperms.

Spinach:

Dark green leafy vegetables such as spinach contain high levels of folic acid. This, when taken in combination with high vitamin C containing products, will directly affect the health and count of sperm.


Definition
Signs and symptoms
Cause
Foods
Non-food proteins
Toxins interacting with proteins
Genetic basis
Hygiene hypothesis
Other environmental factors
Pathophysiology
Diagnosis
Differential diagnosis
Management
Medication
Prevention
History
References


Your immune system produces substances known as antibodies. Some antibodies protect you from unwanted invaders that could make you sick or cause inflame your skin, sinuses, airways or digestive system.
The severity of allergies varies from person to person and can range from minor irritation to anaphylaxis — a potentially life-threatening emergency. While most allergies can't be cured, a number of treatments can help relieve your allergy symptoms


Definition

An allergy is a hypersensitivity disorder of the immune system. Symptoms include red eyes, itchiness, and runny nose, eczema, hives, or an asthma attack. Allergies can play a major role in conditions such as asthma. In some people, severe allergies to environmental or dietary allergens or to medication may result in life-threatening reactions called anaphylaxis. Food allergies and reactions to the venom of stinging insects such as wasps and bees are more often associated with these severe reactions. Not all reactions or intolerances are forms of allergy

Allergic reactions occur when a person's immune system reacts to normally harmless substances in the environment. A substance that causes a reaction is called an allergen. These reactions are acquired, predictable, and rapid. Allergy is one of four forms of hypersensitivity and is formally called type I (or immediate) hypersensitivity. Allergic reactions are distinctive because of excessive activation of certain white blood cells called mast cells and basophils by a type of antibody called immunoglobulin E (IgE). This reaction results in an inflammatory response which can range from uncomfortable to dangerous.

A variety of tests exist to diagnose allergic conditions. If done they should be ordered and interpreted in light of a person's history of exposure as many positive test results do not mean a clinically significant allergy. Tests include placing possible allergens on the skin and looking for a reaction such as swelling and blood tests to look for an allergen-specific IgE.

Treatments for allergies include avoiding known allergens, steroids that modify the immune system in general, and medications such as antihistamines and decongestants which reduce symptoms. Many of these medications are taken by mouth, although epinephrine, which is used to treat anaphylactic reactions, is injected. Immunotherapy uses injected allergens to desensitize the body's response. Mild allergies like hay fever are very common.


Signs and symptoms

Many allergens such as dust or pollen are airborne particles. In these cases, symptoms arise in areas in contact with air, such as eyes, nose, and lungs. For instance, allergic rhinitis, also known as hay fever, causes irritation of the nose, sneezing, itching, and redness of the eyes. Inhaled allergens can also lead to asthmatic symptoms, caused by narrowing of the airways (bronchoconstriction) and increased production of mucus in the lungs, shortness of breath (dyspnea), coughing and wheezing.


Aside from these ambient allergens, allergic reactions can result from foods, insect stings, and reactions to medications like aspirin and antibiotics such as penicillin. Symptoms of food allergy include abdominal pain, bloating, vomiting, diarrhea, itchy skin, and swelling of the skin during hives. Food allergies rarely cause respiratory (asthmatic) reactions, or rhinitis.Insect stings, antibiotics, and certain medicines produce a systemic allergic response that is also called anaphylaxis; multiple organ systems can be affected, including the digestive system, the respiratory system, and the circulatory system.Depending on the rate of severity, it can cause cutaneous reactions, bronchoconstriction, edema, hypotension, coma, and even death. This type of reaction can be triggered suddenly, or the onset can be delayed. The severity of this type of allergic response often requires injections of epinephrine, sometimes through a device known as the EpiPen or Twinject auto-injector. The nature of anaphylaxis is such that the reaction can seem to be subsiding, but may recur throughout a prolonged period of time.

Substances that come into contact with the skin, such as latex, are also common causes of allergic reactions, known as contact dermatitis or eczema.Skin allergies frequently cause rashes, or swelling and inflammation within the skin, in what is known as a "wheal and flare" reaction characteristic of hives and angioedema


Cause

Risk factors for allergy can be placed in two general categories, namely host and environmental factors. Host factors include heredity, sex, race, and age, with heredity being by far the most significant. However, there have been recent increases in the incidence of allergic disorders that cannot be explained by genetic factors alone. Four major environmental candidates are alterations in exposure to infectious diseases during early childhood, environmental pollution, allergen levels, and dietary changes.


Foods

Main article: Food allergy

A wide variety of foods can cause allergic reactions, but 90% of allergic responses to foods are caused by cow's milk, soy, eggs, wheat, peanuts, tree nuts, fish, and shellfish. Other food allergies, affecting less than 1 person per 10,000 population, may be considered "rare".

Rates of allergies differ between adults and children. Peanut allergies can sometimes be outgrown by children. Egg allergies affect one to two percent of children but are outgrown by about two-thirds of children by the age of 5.The sensitivity is usually to proteins in the white, rather than the yolk.

Milk-protein allergies are not Immunoglobulin E reactions, and are usually attributable to proctocolitis. They are most prevalent in children. Some people are unable to tolerate milk from goats or sheep as well as from cows, and many are also unable to tolerate dairy products such as cheese. Roughly 10% of children with a milk allergy will have a reaction to beef. Beef contains a small amount of protein that is present in cow's milk. Lactose intolerance, a common reaction to milk, is not a form of allergy at all, but rather due to the absence of an enzyme in the digestive tract.

Those with tree nut allergies may be allergic to one or to many tree nuts, including pecans, pistachios, pine nuts, and walnuts. Also seeds, including sesame seeds and poppy seeds, contain oils in which protein is present, which may elicit an allergic reaction.

Allergens can be transferred from one food to another through genetic engineering; however genetic modification can also remove allergens. Little research has been done on the natural variation of allergen concentrations in the unmodified crops


Non-food proteins

Latex can trigger an IgE-mediated cutaneous, respiratory, and systemic reaction. The prevalence of latex allergy in the general population is believed to be less than one percent. In a hospital study, 1 in 800 surgical patients (0.125 percent) reported latex sensitivity, although the sensitivity among healthcare workers is higher, between seven and ten percent. Researchers attribute this higher level to the exposure of healthcare workers to areas with significant airborne latex allergens, such as operating rooms, intensive-care units, and dental suites. These latex-rich environments may sensitize healthcare workers who regularly inhale allergenic proteins.

The most prevalent response to latex is an allergic contact dermatitis, a delayed hypersensitive reaction appearing as dry, crusted lesions. This reaction usually lasts 48–96 hours. Sweating or rubbing the area under the glove aggravates the lesions, possibly leading to ulcerations. Anaphylactic reactions occur most often in sensitive patients who have been exposed to a surgeon's latex gloves during abdominal surgery, but other mucosal exposures, such as dental procedures, can also produce systemic reactions.

Latex and banana sensitivity may cross-react. Furthermore, those with latex allergy may also have sensitivities to avocado, kiwifruit, and chestnut. These patients often have perioral itching and local urticaria. Only occasionally have these food-induced allergies induced systemic responses. Researchers suspect that the cross-reactivity of latex with banana, avocado, kiwifruit, and chestnut occurs because latex proteins are structurally homologous with some other plant proteins.


Toxins interacting with proteins

Another non-food protein reaction, urushiol-induced contact dermatitis, originates after contact with poison ivy, eastern poison oak, western poison oak, or poison sumac. Urushiol, which is not itself a protein, acts as a hapten and chemically reacts with, binds to, and changes the shape of integral membrane proteins on exposed skin cells. The immune system does not recognize the affected cells as normal parts of the body, causing a T-cell-mediated immune responseOf these poisonous plants, sumac is the most virulent.The resulting dermatological response to the reaction between urushiol and membrane proteins includes redness, swelling, papules, vesicles, blisters, and streaking.

Estimates vary on the percentage of the population that will have an immune system response. Approximately 25 percent of the population will have a strong allergic response to urushiol. In general, approximately 80 percent to 90 percent of adults will develop a rash if they are exposed to .0050 milligrams (7.7×10−5 gr) of purified urushiol, but some people are so sensitive that it takes only a molecular trace on the skin to initiate an allergic reaction.


Genetic basis

Allergic diseases are strongly familial: identical twins are likely to have the same allergic diseases about 70% of the time; the same allergy occurs about 40% of the time in non-identical twins. Allergic parents are more likely to have allergic children, and those children's allergies are likely to be more severe than those in children of non-allergic parents. Some allergies, however, are not consistent along genealogies; parents who are allergic to peanuts may have children who are allergic to ragweed. It seems that the likelihood of developing allergies is inherited and related to an irregularity in the immune system, but the specific allergen is not.

The risk of allergic sensitization and the development of allergies varies with age, with young children most at risk.Several studies have shown that IgE levels are highest in childhood and fall rapidly between the ages of 10 and 30 years. The peak prevalence of hay fever is highest in children and young adults and the incidence of asthma is highest in children under 10.

Overall, boys have a higher risk of developing allergies than girls,although for some diseases, namely asthma in young adults, females are more likely to be affected.These differences between the sexes tend to decrease in adulthood.

Ethnicity may play a role in some allergies; however, racial factors have been difficult to separate from environmental influences and changes due to migration It has been suggested that different genetic loci are responsible for asthma, to be specific, in people of European, Hispanic, Asian, and African origins.


Hygiene hypothesis

Allergic diseases are caused by inappropriate immunological responses to harmless antigens driven by a TH2-mediated immune response. Many bacteria and viruses elicit a TH1-mediated immune response, which down-regulates TH2 responses. The first proposed mechanism of action of the hygiene hypothesis was that insufficient stimulation of the TH1 arm of the immune system leads to an overactive TH2 arm, which in turn leads to allergic disease. In other words, individuals living in too sterile an environment are not exposed to enough pathogens to keep the immune system busy. Since our bodies evolved to deal with a certain level of such pathogens, when they are not exposed to this level, the immune system will attack harmless antigens and thus normally benign microbial objects — like pollen — will trigger an immune response.

The hygiene hypothesis was developed to explain the observation that hay fever and eczema, both allergic diseases, were less common in children from larger families, which were, it is presumed, exposed to more infectious agents through their siblings, than in children from families with only one child. The hygiene hypothesis has been extensively investigated by immunologists and epidemiologists and has become an important theoretical framework for the study of allergic disorders. It is used to explain the increase in allergic diseases that have been seen since industrialization, and the higher incidence of allergic diseases in more developed countries. The hygiene hypothesis has now expanded to include exposure to symbiotic bacteria and parasites as important modulators of immune system development, along with infectious agents.

Epidemiological data support the hygiene hypothesis. Studies have shown that various immunological and autoimmune diseases are much less common in the developing world than the industrialized world and that immigrants to the industrialized world from the developing world increasingly develop immunological disorders in relation to the length of time since arrival in the industrialized world. Longitudinal studies in the third world demonstrate an increase in immunological disorders as a country grows more affluent and, it is presumed, cleaner.The use of antibiotics in the first year of life has been linked to asthma and other allergic diseases.The use of antibacterial cleaning products has also been associated with higher incidence of asthma, as has birth by Caesarean section rather than vaginal birth.


Other environmental factors

International differences have been associated with the number of individuals within a population have allergy. Allergic diseases are more common in industrialized countries than in countries that are more traditional or agricultural, and there is a higher rate of allergic disease in urban populations versus rural populations, although these differences are becoming less defined.

Exposure to allergens, especially in early life, is an important risk factor for allergy. Alterations in exposure to microorganisms is another plausible explanation, at present, for the increase in atopic allergy.Endotoxin exposure reduces release of inflammatory cytokines such as TNF-α, IFNγ, interleukin-10, and interleukin-12 from white blood cells (leukocytes) that circulate in the blood.Certain microbe-sensing proteins, known as Toll-like receptors, found on the surface of cells in the body are also thought to be involved in these processes.

Gutworms and similar parasites are present in untreated drinking water in developing countries, and were present in the water of developed countries until the routine chlorination and purification of drinking water supplies. Recent research has shown that some common parasites, such as intestinal worms (e.g., hookworms), secrete chemicals into the gut wall (and, hence, the bloodstream) that suppress the immune system and prevent the body from attacking the parasite. This gives rise to a new slant on the hygiene hypothesis theory — that co-evolution of man and parasites has led to an immune system that functions correctly only in the presence of the parasites. Without them, the immune system becomes unbalanced and oversensitive.In particular, research suggests that allergies may coincide with the delayed establishment of gut flora in infants. However, the research to support this theory is conflicting, with some studies performed in China and Ethiopia showing an increase in allergy in people infected with intestinal worms.Clinical trials have been initiated to test the effectiveness of certain worms in treating some allergies. It may be that the term 'parasite' could turn out to be inappropriate, and in fact a hitherto unsuspected symbiosis is at work. For more information on this topic, see Helminthic therapy.


Pathophysiology

Acute response

Degranulation process in allergy. Second exposure to allergen. 1 – antigen; 2 – IgE antibody; 3 – FcεRI receptor; 4 – preformed mediators (histamine, proteases, chemokines, heparine); 5 – granules; 6 – mast cell; 7 – newly formed mediators (prostaglandins, leukotrienes, thromboxanes, PAF)

In the early stages of allergy, a type I hypersensitivity reaction against an allergen encountered for the first time and presented by a professional Antigen-Presenting Cell causes a response in a type of immune cell called a TH2 lymphocyte, which belongs to a subset of T cells that produce a cytokine called interleukin-4 (IL-4). These TH2 cells interact with other lymphocytes called B cells, whose role is production of antibodies. Coupled with signals provided by IL-4, this interaction stimulates the B cell to begin production of a large amount of a particular type of antibody known as IgE. Secreted IgE circulates in the blood and binds to an IgE-specific receptor (a kind of Fc receptor called FcεRI) on the surface of other kinds of immune cells called mast cells and basophils, which are both involved in the acute inflammatory response. The IgE-coated cells, at this stage, are sensitized to the allergen.


If later exposure to the same allergen occurs, the allergen can bind to the IgE molecules held on the surface of the mast cells or basophils. Cross-linking of the IgE and Fc receptors occurs when more than one IgE-receptor complex interacts with the same allergenic molecule, and activates the sensitized cell. Activated mast cells and basophils undergo a process called degranulation, during which they release histamine and other inflammatory chemical mediators (cytokines, interleukins, leukotrienes, and prostaglandins) from their granules into the surrounding tissue causing several systemic effects, such as vasodilation, mucous secretion, nerve stimulation, and smooth muscle contraction. This results in rhinorrhea, itchiness, dyspnea, and anaphylaxis. Depending on the individual, allergen, and mode of introduction, the symptoms can be system-wide (classical anaphylaxis), or localized to particular body systems; asthma is localized to the respiratory system and eczema is localized to the dermis.


Late-phase response

After the chemical mediators of the acute response subside, late-phase responses can often occur. This is due to the migration of other leukocytes such as neutrophils, lymphocytes, eosinophils and macrophages to the initial site. The reaction is usually seen 2–24 hours after the original reaction. Cytokines from mast cells may play a role in the persistence of long-term effects. Late-phase responses seen in asthma are slightly different from those seen in other allergic responses, although they are still caused by release of mediators from eosinophils and are still dependent on activity of TH2 cells.

Allergic contact dermatitis

Although allergic contact dermatitis is termed an "allergic" reaction (which usually refers to type I hypersensitivity), its pathophysiology actually involves a reaction that more correctly corresponds to a type IV hypersensitivity reaction. In type IV hypersensitivity, there is activation of certain types of T cells (CD8+) that destroy target cells on contact, as well as activated macrophages that produce hydrolytic enzymes.


Diagnosis

Effective management of allergic diseases relies on the ability to make an accurate diagnosis. Allergy testing can help confirm or rule out allergies. Correct diagnosis, counseling, and avoidance advice based on valid allergy test results reduces the incidence of symptoms and need for medications, and improves quality of life. To assess the presence of allergen-specific IgE antibodies, two different methods can be used: a skin prick test, or an allergy blood test. Both methods are recommended, and they have similar diagnostic value.

Skin prick tests and blood tests are equally cost-effective, and health economic evidence shows that both tests were cost-effective compared with no test. Also, early and more accurate diagnoses save cost due to reduced consultations, referrals to secondary care, misdiagnosis, and emergency admissions.

Allergy undergoes dynamic changes over time. Regular allergy testing of relevant allergens provides information on if and how patient management can be changed, in order to improve health and quality of life. Annual testing is often the practice for determining whether allergy to milk, egg, soy, and wheat have been outgrown, and the testing interval is extended to 2–3 years for allergy to peanut, tree nuts, fish, and crustacean shellfish.Results of follow-up testing can guide decision-making regarding whether and when it is safe to introduce or re-introduce allergenic food into the diet.

Skin prick testing

Skin testing is also known as "puncture testing" and "prick testing" due to the series of tiny punctures or pricks made into the patient's skin. Small amounts of suspected allergens and/or their extracts (e.g., pollen, grass, mite proteins, peanut extract) are introduced to sites on the skin marked with pen or dye (the ink/dye should be carefully selected, lest it cause an allergic response itself). A small plastic or metal device is used to puncture or prick the skin. Sometimes, the allergens are injected "intradermally" into the patient's skin, with a needle and syringe. Common areas for testing include the inside forearm and the back.


If the patient is allergic to the substance, then a visible inflammatory reaction will usually occur within 30 minutes. This response will range from slight reddening of the skin to a full-blown hive (called "wheal and flare") in more sensitive patients similar to a mosquito bite. Interpretation of the results of the skin prick test is normally done by allergists on a scale of severity, with +/- meaning borderline reactivity, and 4+ being a large reaction. Increasingly, allergists are measuring and recording the diameter of the wheal and flare reaction. Interpretation by well-trained allergists is often guided by relevant literature.Some patients may believe they have determined their own allergic sensitivity from observation, but a skin test has been shown to be much better than patient observation to detect allergy.

If a serious life-threatening anaphylactic reaction has brought a patient in for evaluation, some allergists will prefer an initial blood test prior to performing the skin prick test. Skin tests may not be an option if the patient has widespread skin disease, or has taken antihistamines in the last several days.



Patch testing is a method used to determine if a specific substance causes allergic inflammation of the skin. It tests for delayed reactions. It is used to help ascertain the cause of skin contact allergy, or contact dermatitis. Adhesive patches, usually treated with a number of common allergic chemicals or skin sensitizers, are applied to the back. The skin is then examined for possible local reactions at least twice, usually at 48 hours after application of the patch, and again two or three days later.


Blood testing

An allergy blood test is quick and simple, and can be ordered by a licensed health care provider (e.g., an allergy specialist), GP, or PED. Unlike skin-prick testing, a blood test can be performed irrespective of age, skin condition, medication, symptom, disease activity, and pregnancy. Adults and children of any age can take an allergy blood test. For babies and very young children, a single needle stick for allergy blood testing is often more gentle than several skin tests.

An allergy blood test is available through most laboratories. A sample of the patient’s blood is sent to a laboratory for analysis, and the results are sent back a few days later. Multiple allergens can be detected with a single blood sample. Allergy blood tests are very safe, since the person is not exposed to any allergens during the testing procedure.

The test measures the concentration of specific IgE antibodies in the blood. Quantitative IgE test results increase the possibility of ranking how different substances may affect symptoms. A general rule of thumb is that the higher the IgE antibody value, the greater the likelihood of symptoms. Allergens found at low levels that today do not result in symptoms can nevertheless help predict future symptom development. The quantitative allergy blood result can help determine what a patient is allergic to, help predict and follow the disease development, estimate the risk of a severe reaction, and explain cross-reactivity.

A low total IgE level is not adequate to rule out sensitization to commonly inhaled allergens. Statistical methods, such as ROC curves, predictive value calculations, and likelihood ratios have been used to examine the relationship of various testing methods to each other. These methods have shown that patients with a high total IgE have a high probability of allergic sensitization, but further investigation with allergy tests for specific IgE antibodies for a carefully chosen of allergens is often warranted.

Other

Challenge testing: Challenge testing is when small amounts of a suspected allergen are introduced to the body orally, through inhalation, or via other routes. Except for testing food and medication allergies, challenges are rarely performed. When this type of testing is chosen, it must be closely supervised by an allergist.

Elimination/Challenge tests: This testing method is used most often with foods or medicines. A patient with a suspected allergen is instructed to modify his diet to totally avoid that allergen for a set time. If the patient experiences significant improvement, he may then be “challenged” by reintroducing the allergen, to see if symptoms are reproduced.

Unreliable tests: There are other types of allergy testing methods that are unreliable, including applied kinesiology (allergy testing through muscle relaxation), cytotoxicity testing, urine autoinjection, skin titration (Rinkel method), and provocative and neutralization (subcutaneous) testing or sublingual provocation.


Differential diagnosis

Before a diagnosis of allergic disease can be confirmed, other possible causes of the presenting symptoms should be considered. Vasomotor rhinitis, for example, is one of many maladies that shares symptoms with allergic rhinitis, underscoring the need for professional differential diagnosis. Once a diagnosis of asthma, rhinitis, anaphylaxis, or other allergic disease has been made, there are several methods for discovering the causative agent of that allergy.


Management

In recent times, there have been enormous improvements in the medical practices used to treat allergic conditions. With respect to anaphylaxis and hypersensitivity reactions to foods, drugs, and insects and in allergic skin diseases, advances have included the identification of food proteins to which IgE binding is associated with severe reactions and development of low-allergen foods, improvements in skin prick test predictions; evaluation of the atopy patch test; in wasp sting outcomes predictions and a rapidly disintegrating epinephrine tablet, and anti-IL-5 for eosinophilic diseases.

Traditional treatment and management of allergies consisted simply of avoiding the allergen in question or otherwise reducing exposure. For instance, people with cat allergies were encouraged to avoid them. However, while avoidance of allergens may reduce symptoms and avoid life-threatening anaphylaxis, it is difficult to achieve for those with pollen or similar air-borne allergies. Nonetheless, strict avoidance of allergens is still considered a useful treatment method, and is often used in managing food allergies.

New technology approaches to decreasing IgE overproduction, and regulating histamine release in allergic individuals have demonstrated statistically significant reduction on Total Nasal Symptom Scores.


Medication

Several antagonistic drugs are used to block the action of allergic mediators, or to prevent activation of cells and degranulation processes. These include antihistamines, glucocorticoids, epinephrine (adrenaline), theophylline and cromolyn sodium. Anti-leukotrienes, such as montelukast (Singulair) or zafirlukast (Accolate), are FDA approved for treatment of allergic diseases.citation needed] Anti-cholinergics, decongestants, mast cell stabilizers, and other compounds thought to impair eosinophil chemotaxis, are also commonly used. These drugs help to alleviate the symptoms of allergy, and are imperative in the recovery of acute anaphylaxis, but play little role in chronic treatment of allergic disorders.

Immunotherapy

Desensitization or hyposensitization is a treatment in which the person is gradually vaccinated with progressively larger doses of the allergen in question. This can either reduce the severity or eliminate hypersensitivity altogether. It relies on the progressive skewing of IgG antibody production, to block excessive IgE production seen in atopys.In a sense, the person builds up immunity to increasing amounts of the allergen in question. Studies have demonstrated the long-term efficacy and the preventive effect of immunotherapy in reducing the development of new allergy. Meta-analyses have also confirmed efficacy of the treatment in allergic rhinitis in children, and in asthma. A review by the Mayo Clinic in Rochester confirmed the safety and efficacy of allergen immunotherapy for allergic rhinitis and conjunctivitis, allergic forms of asthma, and stinging insect based on numerous well-designed scientific studies.In addition, national and international guidelines confirm the clinical efficacy of injection immunotherapy in rhinitis and asthma, as well as the safety, provided that recommendations are followed.


A second form of immunotherapy involves the intravenous injection of monoclonal anti-IgE antibodies. These bind to free and B-cell associated IgE; signalling their destruction. They do not bind to IgE already bound to the Fc receptor on basophils and mast cells, as this would stimulate the allergic inflammatory response. The first agent of this class is omalizumab. While this form of immunotherapy is very effective in treating several types of atopy, it should not be used in treating the majority of people with food allergies.

A third type, sublingual immunotherapy, is an orally administered therapy that takes advantage of oral immune tolerance to non-pathogenic antigens such as foods and resident bacteria. This therapy currently accounts for 40 percent of allergy treatment in Europe.

In the United States, sublingual immunotherapy is gaining support among traditional allergists and is endorsed by doctors treating allergy.

Allergy shot treatment is the closest thing to a ‘cure’ for allergic symptoms. This therapy requires a long-term commitment.

Other

An experimental treatment, enzyme potentiated desensitization (EPD), has been tried for decades but is not generally accepted as effective. EPD uses dilutions of allergen and an enzyme, beta-glucuronidase, to which T-regulatory lymphocytes are supposed to respond by favouring desensitization, or down-regulation, rather than sensitization. EPD has also been tried for the treatment of autoimmune diseases but is not approved by the U.S. Food and Drug Administration or of proven effectiveness.

Systematic literature searches conducted by the Mayo Clinic through 2006, involving hundreds of articles studying multiple conditions, including asthma and upper respiratory tract infection, showed no effectiveness of homeopathic treatments and no difference compared with placebo. The authors concluded that, based on rigorous clinical trials of all types of homeopathy for childhood and adolescence ailments, there is no convincing evidence that supports the use of homeopathic treatments.


Prevention

The consumption of various foods during pregnancy has been linked to eczema; these include celery, citrus fruit, raw pepper, margarine, and vegetable oil.A high intake of antioxidants, zinc, and selenium during pregnancy may help prevent allergies. This is linked to a reduced risk for childhood-onset asthma, wheezing, and eczema. Further research needs to be conducted. Probiotic supplements taken during pregnancy or infancy may help to prevent atopic dermatitis. After birth, an early introduction of solid food and high diversity before week 17 could increase a child's risk for allergies. Studies suggest that introduction of solid food and avoidance of highly allergenic food such as peanuts during the first year does not help in allergy prevention.

EpidemiologyMany diseases related to inflammation such as type 1 diabetes, rheumatoid arthritis, and allergic diseases — hay fever and asthma — have increased in the Western world over the past 2–3 decades. Rapid increases in allergic asthma and other atopic disorders in industrialized nations, it is estimated, began in the 1960s and 1970s, with further increases occurring during the 1980s and 1990s, although some suggest that a steady rise in sensitization has been occurring since the 1920s. The incidence of atopy in developing countries has, in general, remained much lower

Although genetic factors fundamentally govern susceptibility to atopic disease, increases in atopy have occurred within too short a time frame to be explained by a genetic change in the population, thus pointing to environmental or lifestyle changes. Several hypotheses have been identified to explain this increased prevalence; increased exposure to perennial allergens due to housing changes and increasing time spent indoors, and changes in cleanliness or hygiene that have resulted in the decreased activation of a common immune control mechanism, coupled with dietary changes, obesity and decline in physical exercise.

 The hygiene hypothesis maintainsthat high living standards and hygienic conditions exposes children to fewer infections. It is thought that reduced bacterial and viral infections early in life direct the maturing immune system away from TH1 type responses, leading to unrestrained TH2 responses that allow for an increase in allergy.

Changes in rates and types of infection alone however, have been unable to explain the observed increase in allergic disease, and recent evidence has focused attention on the importance of the gastrointestinal microbial environment. Evidence has shown that exposure to food and fecal-oral pathogens, such as hepatitis A, Toxoplasma gondii, and Helicobacter pylori (which also tend to be more prevalent in developing countries), can reduce the overall risk of atopy by more than 60%,and an increased prevalence of parasitic infections has been associated with a decreased prevalence of asthma. It is speculated that these infections exert their effect by critically altering TH1/TH2 regulation. Important elements of newer hygiene hypotheses also include exposure to endotoxins, exposure to pets and growing up on a farm.


History

The concept of "allergy" was originally introduced in 1906 by the Viennese pediatrician Clemens von Pirquet, after he noted that some of his patients were hypersensitive to normally innocuous entities such as dust, pollen, or certain foods.Pirquet called this phenomenon "allergy" from the Ancient Greek words ἄλλος allos meaning "other" and ἔργον ergon meaning "work".

All forms of hypersensitivity used to be classified as allergies, and all were thought to be caused by an improper activation of the immune system. Later, it became clear that several different disease mechanisms were implicated, with the common link to a disordered activation of the immune system. In 1963, a new classification scheme was designed by Philip Gell and Robin Coombs that described four types of hypersensitivity reactions, known as Type I to Type IV hypersensitivity.With this new classification, the word "allergy" was restricted to type I hypersensitivities (also called immediate hypersensitivity), which are characterized as rapidly developing reactions.

A major breakthrough in understanding the mechanisms of allergy was the discovery of the antibody class labeled immunoglobulin E (IgE) – Kimishige Ishizaka and co-workers were the first to isolate and describe IgE in the 1960s.

Diagnosis

Radiometric assays include the radioallergosorbent test (RAST test) method, which uses IgE-binding (anti-IgE) antibodies labeled with radioactive isotopes for quantifying the levels of IgE antibody in the blood.Other newer methods use colorimetric or fluorescence-labeled technology in the place of radioactive isotopes.

The RAST methodology was invented and marketed in 1974 by Pharmacia Diagnostics AB, Uppsala, Sweden, and the acronym RAST is actually a brand name. In 1989, Pharmacia Diagnostics AB replaced it with a superior test named the ImmunoCAP Specific IgE blood test, which uses the newer fluorescence-labeled technology.

American College of Allergy Asthma and Immunology (ACAAI) and the American Academy of Allergy Asthma and Immunology (AAAAI) issued the Joint Task Force Report “Pearls and pitfalls of allergy diagnostic testing” in 2008, and is firm in its statement that the term RAST is now obsolete:

The term RAST became a colloquialism for all varieties of (in vitro allergy) tests. This is unfortunate because it is well recognized that there are well-performing tests and some that do not perform so well, yet they are all called RASTs, making it difficult to distinguish which is which. For these reasons, it is now recommended that use of RAST as a generic descriptor of these tests be abandoned.

The new version, the ImmunoCAP Specific IgE blood test, is the only specific IgE assay to receive FDA approval to quantitatively report to its detection limit of 0.1kU/l.

Medical specialty

An allergist is a physician specially trained to manage and treat allergies, asthma and the other allergic diseases. In the United States physicians holding certification by the American Board of Allergy and Immunology (ABAI) have successfully completed an accredited educational program and evaluation process, including a proctored examination to demonstrate knowledge, skills, and experience in patient care in allergy and immunology.

Becoming an allergist/immunologist requires completion of at least nine years of training. After completing medical school and graduating with a medical degree, a physician will undergo three years of training in internal medicine (to become an internist) or pediatrics (to become a pediatrician). Once physicians have finished training in one of these specialties, they must pass the exam of either the American Board of Pediatrics (ABP), the American Osteopathic Board of Pediatrics (AOBP), the American Board of Internal Medicine (ABIM), or the American Osteopathic Board of Internal Medicine (AOBIM). Internists or pediatricians wishing to focus on the sub-specialty of allergy-immunology then complete at least an additional two years of study, called a fellowship, in an allergy/immunology training program. Allergist/immunologists listed as ABAI-certified have successfully passed the certifying examination of the ABAI following their fellowship.

In the United Kingdom, allergy is a subspecialty of general medicine or pediatrics. After obtaining postgraduate exams (MRCP or MRCPCH), a doctor works for several years as a specialist registrar before qualifying for the General Medical Council specialist register. Allergy services may also be delivered by immunologists. A 2003 Royal College of Physicians report presented a case for improvement of what were felt to be inadequate allergy services in the UK. In 2006, the House of Lords convened a subcommittee. It concluded likewise in 2007 that allergy services were insufficient to deal with what the Lords referred to as an "allergy epidemic" and its social cost; it made several recommendations.


 References


- Kay AB (2000). "Overview of 'allergy and allergic diseases: with a view to the future'". Br. Med. Bull.
- Bahna SL (Dec 2002). "Cow's milk allergy versus cow milk intolerance.". Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology .
- Cox L, Williams B, Sicherer S, Oppenheimer J, Sher L, Hamilton R, Golden D (December 2008). "Pearls and pitfalls of allergy diagnostic testing: report from the American College of Allergy, Asthma and Immunology/American Academy of Allergy, Asthma and Immunology Specific IgE Test Task Force". Annals of Allergy, Asthma & Immunology .
- Bope, Edward T.; Rakel, Robert E. (2005). Conn's Current Therapy 2005. Philadelphia, PA: W.B. Saunders Company.
- Holgate ST (1998). "Asthma and allergy—disorders of civilization?".
-Rusznak C, Davies RJ (1998). "ABC of allergies. Diagnosing allergy"..
-Golden DB (2007). "Insect sting anaphylaxis". Immunol Allergy Clin North Am.
- Schafer JA, Mateo N, Parlier GL, Rotschafer JC (2007). "Penicillin allergy skin testing: what do we do now?". Pharmacotherapy .
- "A practical guide to anaphylaxis". Am Fam Physician .

Polyhydramnios is associated with all of the following conditions except :

A. amniotic fluid volume between 500 and 2000mL
B. maternal diabetes
C. triplets
D. erythroblastosis fetalis
E. Down syndrome


 



Kidney stones are common – five to 10 in 100 people are affected by pain associated with kidney stones at some point in their life. Most people who get kidney stones for the first time are aged between 20 and 50.

You normally have two kidneys, which ‘clean’ your blood, and filter out water and waste products to make urine. Kidney stones can form when there is an imbalance of salts or minerals in your urine. These minerals form into crystals, which are often too small to notice, and pass harmlessly out of your body. However, over time, they can build up inside your kidney to form a kidney stone.

Most kidney stones (about four out of five) are made up of calcium salts (calcium oxalate or calcium phosphate, or both). They can also be made up of other substances, including uric acid, cystine and struvite. They can range in size and may be smooth or jagged in texture.

Kidney stones can move out of your kidney into your ureter – the tube that carries urine from your kidney to your bladder. This can cause severe pain, known as renal colic.

 Symptoms of kidney stones

Many kidney stones are too small to cause symptoms. But if a kidney stone causes a blockage or moves into your ureter, it may cause symptoms, such as:

severe pain or ache on one or both sides of your back
sudden spasms of excruciating pain – this usually starts in the back below your ribs, radiating around your abdomen, and sometimes to your groin and genitals
blood in your urine
feeling sick or vomiting
needing to urinate often, or feeling a burning sensation during urination
The pain of kidney stones – called renal colic – can be very severe. It begins as soon as the stone becomes stuck in your ureter and tends to come in waves. It's not usually associated with the size of the kidney stone – sometimes small stones can cause more pain than very large ones.

Small kidney stones are usually passed out of your body within a day or so and mostly within six weeks. Bigger stones are less likely to pass out of your body spontaneously. Stones greater than 5mm (a quarter of an inch) in diameter are the least likely to pass without medical help.

If you have any symptoms of kidney stones, you should see your GP. If your symptoms are severe, you may need to seek urgent medical attention.

Complications of kidney stones




If the kidney stone completely blocks your ureter, it can stop the flow of urine. Without treatment to remove the kidney stone, this can lead to permanent damage to your kidneys within a number of weeks.

If a kidney stone is blocking your ureter, this can also cause severe infection, which can become life-threatening without treatment. Signs of an infection include having a fever and cloudy urine. It's important that you seek urgent medical attention if you have these symptoms.

Causes of kidney stones




Men are more likely to get kidney stones than women. About half of people who have had a kidney stone go on to get more within 10 years.

In most people, there is no obvious reason for what causes kidney stones, although you may be more likely to get them if you:

have a family history of kidney stones
are aged between 30 and 50
are taking certain medicines – for example, protease inhibitors (such as indinavir) and certain diuretics (such as triamterene)
are taking too many vitamin C or calcium/vitamin D supplements, or antacids
have a condition affecting the shape or structure of your kidney
have a lot of salt or protein in your diet
don't drink enough fluids
have certain conditions, such as hyperparathyroidism, high blood pressure or Crohn’s disease
have cystitis – the bacteria that cause this infection can break down the a substance found in urine called urea, which can lead to kidney stones
Diagnosis of kidney stones

Your GP will ask you about your symptoms and examine you. He or she may test a sample of your urine using a ‘dipstick’ to check for signs of infection and may send the sample to a laboratory for further tests.

Your GP may do more tests to confirm the diagnosis and/or refer you to a urologist (a doctor who specialises in identifying and treating conditions that affect the urinary system) for tests. These will show the size, location and type of kidney stone you have. You may have the following tests.

A full blood count – this is to check for signs of infection, to check how well your kidneys are functioning, and to check the levels of certain minerals that cause kidney stones.
CT (computed tomography) scan (may be referred to as a CT urogram) – this uses X-rays to make a three-dimensional image of your kidneys and urinary system.
Intravenous urogram (IVU) – this involves injection of a special dye that shows up the urinary system and any stones on X-ray images. You may be offered an IVU if CT urogram isn’t available in your hospital.
Ultrasound scan – this uses sound waves to produce an image of your kidneys and urinary system.
X-ray – stones that contain calcium usually show up white on X-ray images.
24-hour urine collection – to check levels of certain minerals such uric acid, oxalate, phosphate and calcium in your urine.
Treatment of kidney stones

Your treatment depends on the type and cause of your kidney stone. Most stones can be treated without surgery.

Home treatment

Your GP may recommend home treatment. If your stone is smaller than about 5mm you can normally pass it in your urine. However, you may need some pain relief, and your GP will usually offer you medicines to reduce pain and sickness. See our frequently asked question for more information on pain relief. He or she may also advise you to make sure you drink enough fluids to help flush out the kidney stone.

Your GP may ask you to catch the kidney stone by passing your urine through filter paper or a tea strainer. The stone can then be analysed to find out what type it is, to help guide your treatment and prevent more stones.

If the kidney stone doesn’t pass out of your body within about six weeks, or your symptoms get worse, it's likely that you will need hospital treatment.

Medicines

If your urologist thinks you have an infection then he or she will prescribe you antibiotics.

If your kidney stone is less than 10mm (1cm) and doesn’t need to be removed immediately, your urologist may offer medicines called alpha-blockers to help the stone pass out in your urine. This is called medical expulsive therapy (MET). This treatment isn’t commonly used in the UK at present, however there is ongoing research to assess how well it works.

Non-surgical treatments

If your kidney stone can't pass out in your urine by itself, your urologist may advise you to have a procedure called extracorporeal shock wave lithotripsy (ESWL). In this procedure, your doctor will use a machine called a lithotripter to send shock waves through the skin of your abdomen (tummy) to your kidney stone to break it up into crystals small enough to be passed in your urine. You may feel some pain as the stone breaks up, so the procedure is usually performed under sedation with a painkiller.

You may need to have this procedure more than once to completely get rid of your kidney stones. ESWL may not be suitable if you are pregnant.

Surgery

If your kidney stone is very large, or is blocking your ureter and can’t be removed with ESWL, you may need keyhole surgery to remove it. Types of keyhole surgery include the following.

Ureteroscopic stone removal
This type of surgery can remove stones that are lodged in your ureter. Your surgeon will pass a narrow, flexible instrument called a ureteroscope up through your urethra, your bladder and ureter. A laser beam or shock waves from a device on the ureteroscope remove or break up the stone. Occasionally, if your surgeon is unable to pass the ureteroscope into your urethra, he or she may insert a soft tube (stent) first. This can help to relieve the obstruction and make it easier to insert the ureteroscope at a later date.

A soft tube (stent) may be left in your ureter for a few days until it heals. Ureteroscopy is usually done under general anaesthesia. This means you will be asleep during the procedure. If you have had a stent, you will be given a date to have it removed before you are discharged. Stents are usually removed under local anaesthesia.

Percutaneous nephrolithotomy (PCNL)
This is a type of surgery that can be used to remove large stones from your kidney. Your surgeon will make a small cut in your back and use a telescopic instrument called a nephroscope to pull the stone out or break it up using a laser beam or shock waves. PCNL is performed under general anaesthesia.

Prevention of kidney stones

If you have had a kidney stone, your doctor will probably advise you to increase the amount of water you drink, to prevent getting another one. Aim for enough to make your urine clear rather than yellow.

In addition, if you have had a calcium stone, your doctor may advise you to do the following.

Don’t eat more than 3g of salt a day – don’t add it to your food and avoid processed foods.
Cut down on foods that have high levels of oxalate – such as chocolate, tea, rhubarb, spinach, nuts and strawberries.
Eat less meat, fish and poultry – liver, kidneys, herrings with skin, sardines, anchovies and poultry skin increase the amount of uric acid in your urine.
Don’t take supplements containing calcium, vitamins A, C or D.
If you get uric acid stones, your GP may also prescribe medicines (such as allopurinol) to help reduce levels of uric acid in your urine.



Upper Gastrointestinal Endoscopy is a procedure that uses a lighted, flexible endoscope to see inside the upper GI tract. The upper GI tract includes the esophagus, stomach, and duodenum—the first part of the small intestine.